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Abstract A constitutive model of finite strain viscoelas-

ticity, based on the multiplicative decomposition of the

deformation gradient tensor into elastic and inelastic parts,

is presented. The nonlinear response of rubbers, manifested

by the rate effect, cycling loading and stress relaxation tests

was captured through the introduction of two internal

variables, namely the constitutive spin and the back stress

tensor. These parameters, widely used in plasticity, are

applied in this work to model the nonlinear viscoelastic

behaviour of rubbers. The experimental results, obtained

elsewhere, related with shear deformation in monotonic

and cyclic loading, as well as stress-relaxation, were

simulated with a good accuracy.

Introduction

The theoretical study of the mechanics of nonlinear

materials with memory was first performed by Green and

Rivlin [1], Coleman and Noll [2], Noll [3], and Pipkin [4].

Green and Rivlin have examined materials where the

stresses were functionally dependent on the deformation

gradient history, in terms of multiple integration. Valanis

and Landel [5] have proposed a constitutive equation at

large deformations for a filled rubber. This equation con-

tains three relaxation functions proportional to the same

function of time and independent of the deformation.

Finite strain viscoelasticity was also studied by Flowers

and Lianis [6] where theoretical expressions for uniaxial

and equal homogeneous biaxial single-step and double-step

relaxation were developed.

The nonlinear viscoelastic response of filled rubbers,

revealed either by strain rate dependence or stress relaxation

behaviour, remains still one of the most intricate tasks for

finite viscoelasticity. The effect of strain rate on the

mechanical response of filled rubber was studied earlier by

Mason [7] and Dannis [8], when the tensile strength of

rubber was found to increase with increasing strain rate.

Apart from this, when an elastomer is subjected to constant

strain, and the corresponding stress response is recorded, it

was found by Gent [9] that the stress relaxes significantly

during the first 2 s. Therefore, the stress relaxation time

history during the first 6 s of the tests remained unknown.

Later, this short coming has been overcome, and in sub-

sequent studies of Lion [10], Bergstrom and Boyce [11, 12],

more information about stress relaxation history of rubbers

under uniaxial tension and compression has been reported.

Hereafter, creep, relaxation and rate dependent behaviour

of polymers under tension was investigated by Khan and

Zhang [13], Khan and Lopez-Pamies [14] and Krempl and

Khan [15]. Moreover, strain rate sensitivity, multiple creep

and recovery behaviour of polyphenylene oxide, studied

experimentally by Khan [16], were modeled by Colak [17],

in terms of a viscoplasticity theory based on overstress.

Nonlinear rate sensitivity, nonlinear unloading, creep and

recovery data could be reproduced using the theory of

overstress. Within this frame, in a work by Naghidabadi

et al. [18] a finite deformation constitutive model for rigid

plastic hardening materials based on the logarithmic strain

tensor is introduced. The flow rule of this constitutive model

relates the corotational rate of the logarithmic strain tensor

to the difference of the deviatoric Cauchy stress and the back
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stress tensor. The evolution equation for the kinematic

hardening of this model relates the corotational rate of the

back stress tensor to the corotational rate of the logarithmic

strain tensors. In a work by Kafka et al. [19], modeling of

creep and relaxation is presented in good agreement with

experimental results. In this approach, notions like back

stress, effective stress, overstress and equilibrium stress are

given clear physical meaning by confronting their use with

the use of internal stresses, represented on the mesoscale as

tensorial internal variables.

Vulcanized rubbers are related with a wide range of

engineering applications, such as tires, engine mounts,

tunnel linings or buildings protection from earthquakes.

Rubber bearings for base isolation devices are usually of

cubic and cylindrical shape and are mainly subjected to a

combination of compression and shear deformation.

When the structure is subjected to large cyclic loading,

arising from earthquakes the delivered energy may be

absorbed through the rubber’s hysteresis properties.

Therefore, high damping rubbers (HDR) are synthesized

with a large number of additives such as carbon black,

silica and oils. The quasistatic cyclic behaviour of HDR

under shear has been reported by Yoshida et al. [20].

Moreover, Amin [21] and Amin et al. [22], examined the

nonlinear rate-independent monotonic response of the

equilibrium stress of HDR, in terms of compression and

shear. In their study, an important hyperelasticity relation,

a procedure for the identification of material parameters

and the application of the model in a general purpose finite

element code were proposed to simulate rate independent

response. However, it was shown from these studies, that

there is a significant rate-dependence effect in HDR.

Therefore, due to the above-mentioned reasons, there is

a need, for the estimation of the performance of rubber

bearings and consequently their optimum design.

In a recent work by Amin et al. [22], the rate dependent

behaviour of filled natural rubber (NR) and HDR has been

studied in compression and shear. A constitutive model of

finite strain viscoelasticity, based on the multiplicative

decomposition of the deformation gradient tensor into

elastic and inelastic parts is proposed. The total stress is

decomposed into an equilibrium stress and a viscosity-

induced overstress. An evolution equation in terms of

power laws was proposed to express the effects of internal

variables on viscosity phenomena.

Their analysis is based on a work by Huber et al. [23],

where an analogous decomposition in terms of two types of

spring-dashpot models is presented. In their approach, the

second law of thermodynamics was satisfied, and the

concept of the so-called Mandel stress-tensor was applied.

More specifically, from the requirement of the thermody-

namic consistency, a flow rule for the inelastic strain rate in

the so-called intermediate configuration was proved to

apply, and was expressed in terms of an overstress, formed

by Mandel stress tensors.

In a series of works by Boyce et al. [24], macroscopic

mechanical behaviour was connected with molecular

mechanisms of deformation resistance, through three-

dimensional constitutive models. The rate-, temperature-,

and pressure-dependent finite-strain deformation of ther-

moplastic materials was described with a model composed

of a linear spring in series with a viscoplastic dashpot to

express the intermolecular resistance, in parallel with a

nonlinear Langevin spring, representing the entropic

hardening. The corresponding constitutive laws connect the

rates of shape change (plastic stretching) with the stress in

the deforming material. The direction tensor is taken to be

coaxial with the deviatoric stresses acting on the intermo-

lecular network.

In the present analysis, it is assumed that a material’s

finite deformation viscoelasticity arises from an intermo-

lecular resistance, related with both an elastic constituent

and a nonlinear fluid, as well as from an entropic resis-

tance. The last one is modeled with a non-Gaussian type

constitutive equation for elastomers. Moreover, the evolu-

tion of the viscoelastic component is mainly determined by

an internal variable, the so-called back stress tensor a. The

concept of constitutive spin introduced by Dafalias [25, 26]

was also used to express the objective rates of the consti-

tutive equation of hypoelasticity. Both variables, back

stress and constitutive spin were applied to the constitutive

laws of the symmetric and antisymmetric part of the

inelastic velocity gradient tensor. The main features of

nonlinear viscoelastic response of rubbers, such as rate

effect on monotonic and cyclic loading, as well as stress

relaxation behaviour in terms of shear deformation were

captured with a very satisfactory approximation. Corre-

sponding experimental results were available from a recent

work by Amin et al. [22].

Kinematics

In the present work, finite deformation viscoelasticity will

be treated within the framework of the multiplicative

decomposition of the deformation gradient tensor F into an

elastic Fe and inelastic (viscoelastic) part Fi, in a similar

way to the corresponding multiplicative decomposition of

F in plasticity (see [27] and [28]).

According to this decomposition, expressed in Eq. 1,

part Fi introduces an intermediate equilibrium configura-

tion, which results from the current state by fast unloading,

or from the original configuration by inelastic deformation.

F ¼ FeFi: ð1Þ

Subsequently, the elastic deformation gradient tensor Fe

maps the material point from the relaxed to the current
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configuration, which is obtained from the relaxed by purely

elastic deformation and rotation. The relaxed configuration

is arbitrarily defined, since an arbitrary rigid rotation can be

superimposed on it and leave it unstressed.

The velocity gradient tensor L in the current configu-

ration is defined by:

L ¼ _FF�1 ¼ DþW ð2Þ

and at the unstressed configuration:

_FiFi�1 ¼ _FiFi�1
� �

s
þ _FiFi�1
� �

a
¼ Di

0 þ _FiFi�1
� �

a
ð3Þ

where D,W are the rate deformation tensor and material

spin tensors correspondingly at the current configuration.

Subscripts s, a denote the symmetric and antisymmetric

part of a tensor, and Di
o; ð _FiFi�1Þa are the inelastic rate of

deformation tensor and inelastic material spin tensor at the

relaxed configuration. It is important to mention here again,

what is emphasized by Dafalias [29], i.e., the arbitrariness

of the term ð _FiFi�1Þa, which is related with the arbitrariness

of the intermediate configuration.

To overcome this problem, Mandel [30] proposed a triad

of orthonormal vectors that represent the material sub-

structure and follow different kinematics than the

continuum. The kinematic quantities Fe and Fi are then

defined in terms of the corotational rates as follows:

F
o

e ¼ _Fe þ Fex

F
o

i ¼ _Fi � xFi
ð4Þ

where x is the spin of the substructure related with the

rotation of the triad vestors. This is in accordance with the

common notion in elasticity theory, that elastic deforma-

tion is directly connected to the deformation of the

substructure, while this cannot be generalized in anelas-

ticity. In the elastic–plastic response, a decoupling

deformation process between continuum and substructure

is required.

Following this consideration and taking into account, Eq.

(4), the kinematics in the current configuration is given by:

D ¼ De þ Di ð5Þ

where De is the elastic part of the rate deformation tensor,

and Di the inelastic part of it. All these quantities are now

invariant upon superposed rigid body rotation.

The corresponding relations are as follows:

De ¼ FeFe�1
0

 !

s

ð6Þ

Di ¼ Fe Di
0 þ FiFi�1

0
 !

a

" #
Fe�1

 !

s

ð7Þ

and

Di
0 ¼ FiFi�1

0
" #

s

ð8Þ

With respect to the corotational rates for the kinematical

quantities, it follows also Dafalias [26] that:

_FiFi�1
� �

a
¼ xþ FiFi�1

0
 !

a

¼ xþWi
0 ð9Þ

where Wi
0 is the inelastic spin at the intermediate config-

uration material and x is the substructural spin. Through

this relation, which is analogous to Eq. 5 obtained from the

additive decomposition of the deformation rate tensor, the

arbitrariness of ð _FiFi�1Þa can be overcome with a proper

value of x. Referring to Eq. 9, Mandel [30] has considered

x to be the rigid body spin of the director triad, common

for all tensorial internal variables. Later Dafalias [29]

generalized this description, introducing different x’s

associated with each internal variable, and abandoned the

notion of director triad as unnecessary. The decomposition

as expressed by Eqs. 5 and 9 calls for constitutive laws for

De;Di
0;W

i
0 and x.

For the implementation of our analysis to the nonlinear,

large deformation response, an internal variable is intro-

duced, in terms of a deviatoric back-stress tensor a.

The necessity of constitutive relations for Di
0;W

i
0 is in

strong connection with this internal variable. To provide a

definite expression for Di we assume a flow rule, for the

symmetric part of the inelastic strain rate tensor Di
0 in the

intermediate configuration, in accordance with the flow

rule proposed by Amin et al. [22]:

Di
0 ¼

1

g
P0 � PA

0

� �
ð10Þ

where P0;P
A
0 are the so-called Mandel stress tensors [28],

defined as:

P0 ¼ FeT

r0FeT�1

ð11Þ

PA
0 ¼ FeT

aFeT�1

ð12Þ

where r0 is the deviatoric Cauchy stress tensor. Equation

(10) represents a generalization of a Newtonian fluid, with

g being a nonlinear viscosity. This expression is written in

analogy to the flow rule for the inelastic strain rate tensor in

the work by Huber et al. [23]. A similar flow rule is also

applied in a work by Anand et al. [31]. Parameter g in this

work [31] was taken to be stress and pressure dependent, so

that effects related with the macroscopic response of an

amorphous glassy polymer, such as yielding and strain

softening could be modeled. In the work by Amin et al.

[22], a power law function for the viscosity is incorporated

in the constitutive equation for the inelastic strain rate

tensor. The stress and strain dependence of the viscosity is
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modeled in terms of two parameters. In our work, a simpler

form for the nonlinear viscosity g will be adapted, through

an Eyring type equation:

g ¼ g0 exp �dkr0 � ak½ � ð13Þ

where g0 is a constant. The strain dependence of g could be

considered through parameter d, but in our calculations d
was treated as a constant.

Moreover, it is assumed that the time evolution of back

stress tensor a is expressed by Ziegler’s law [32]:

a
0 ¼ hðaÞDi

0 ð14Þ

In our analysis, function h was taken to be stress-dependent

as follows:

h ¼ h0 exp �bkakð Þ ð15Þ

where h0,b are constants and kak ¼
ffiffiffiffiffiffiffiffiffi
a � a
p

denotes the

magnitude of a tensor.

Regarding the constitutive description of the inelastic

spin Wi
0, a general form of constitutive equation of it may

be of the type:

Wi
0 ¼ kXiðr; aÞ ð16Þ

where k is a proportional factor, and Xi is an antisymmetric

tensor, and isotropic function of stress tensor r and back

stress tensor a. Following Dafalias [26] the following

simplified form for Eq. 16 is proposed:

Wi
0 ¼

q
2

aDi
0 � Di

0a
� �

ð17Þ

where q is a material function.

The constitutive law for De is related with hypoelasticity

theory, and taking into account that the material rate of

stress tensors, involved in hypoelasticity, is not objective,

the corotational rates of all types of stress tensors need to

be specified. There have been extensive studies on the

undesirable oscillatory responses of the stresses predicted

by the improper use of the rate-type constitutive equations.

Among the various proposed objective rates, the one based

on the concept of plastic spin by Dafalias [25, 26] will be

applied. Then the following set of constitutive equations

will be used to describe the viscoelastic response at large

deformations:

De ¼ L�1 : r
0 ð18Þ

r
0 ¼ _r� xrþ rx ð19Þ

a
0 ¼ _a� xaþ ax ð20Þ

where L is a fourth order tensor, r
0
;a

0
are the corotational

rates of Cauchy and back stress tensor, respectively, and x
is the substructural spin.

Application to simple shear monotonic and cyclic

loading

The present model will be justified on simple shear

monotonic and cyclic loading performed on HDR in a

recent work by Amin et al. [22]. If the problem is con-

sidered to be a two-dimensional one, the corresponding

symmetric parts of the velocity gradient tensor are as

follows:

D ¼
0 D12

D12 0

� �
De ¼

De
11 De

12

Dei
12 De

22

� �

Di ¼ Di
11 Di

12

Di
12 Di

22

 ! ð21Þ

where

D12 ¼
_c
2

ð22Þ

and _c is the rate of shear deformation. The inelastic spin

tensor will accordingly given by:

Wi
0 ¼

0 Wi
012

�Wi
012

0

� �
ð23Þ

where its constitutive law is given by Eq. 17.

Combining Eqs. 9, 17, and 20 for monotonic shear

deformation, we obtain:

_a11 ¼ h Di
011
þ a12 _cþ 2qa2

12Di
011
� 2qa11a12Di

012
ð24aÞ

_a12 ¼ h Di
012
� a11 _cþ 2qa2

11Di
012
� 2qa11a12Di

011
ð24bÞ

Moreover, applying Eqs. 1, 3, 4, 7, and making the

further assumption that small elastic deformations exist,

compared to the anelastic ones, therefore D ¼ Di and Fe is

the identity tensor, we have:

Di
011
¼ 0 and Di

012
¼ _c

2
ð25Þ

and

r011 ¼ a11 and r012 ¼ a12 þ g
_c
2

ð26Þ

where r0ij are the corresponding components of the devia-

toric Cauchy stress tensor.

Combining Eqs. 5, 7, 11, 18 and 19 for monotonic shear

deformation, we obtain:

_r11 ¼ l De
11 þ r12 _cþ 2qr12a12Di

11 � 2qr12a11Di
12 ð27Þ

_r12 ¼ l De
12 � r11 _cþ qr11a11Di

12 � qr11a12Di
11 ð28Þ

where l is the shear modulus of the material.

The set of Eqs. 21–24 can be solved numerically to

obtain tensors r and a.

The total stress tensor will accordingly be given by:
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rtot ¼ rþ rentr ð29Þ

where rentr is the stress tensor related with the material’s

entropic hardening. It is taken to be coaxial with the

inelastic stretch tensor. The model of Wang and Guth [33]

of rubber elasticity was applied and the principal

components of rentr take the form:

ð�rentrtÞi ¼
CR

3

ffiffiffi
q
p

kiL
�1 kiffiffiffi

q
p
� �

� 1

3

X
j

kjL
�1 kjffiffiffi

q
p
� �" #

ð30Þ

where CR is a rubbery modulus,
ffiffiffi
q
p

is the tensile locking

network stretch (or natural draw ratio), L-1 is the inverse

Langevin function, and ki are the principal inelastic stretch

components, obtained by the total deformation gradient F

and given by:

k1 ¼
1

2
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2

p� �

k2 ¼�
1

2
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2

p� �

k3 ¼1

ð31Þ

Then, tensor �rentrt must be transformed with the

appropriate transformation matrix R:

rentr ¼ R�rentrRT ð32Þ

with R ¼ cos h sin h
� sin h cos h

� �
and tan h ¼ k1

The validity of our approach was tested by simulating

the experimental results of the monotonic response of

HDR, performed by Amin et al. [22]. In Fig. 1, the

experimental results, for HDR, in simple shear loading,

at two different strain rates, namely 0.5 and 0.05 s-1 are

plotted, in comparison with the simulated data of our

analysis. A satisfactory agreement between theory and

experiment was obtained, and the rate dependence could

also be modeled in an accurate way.

Numerical calculations were made using the software

Mathematica [34] for step integration of the corresponding

equations.

Parameter values were estimated with a trial and error

procedure, and were found to be as follows:

h0¼ 12 MPas�1;b¼ 6 MPa�1;g0¼ 600 MPa s;

CR¼ 0:16 MPa, q¼ 3;d¼ 0:7 MPa�1;l¼ 5 MPa, q¼ 1:

The unloading response of HDR is presented in Figs. 2

and 3 at two different strain rates, after Amin et al. The

strong rate dependence which is observed during loading is

followed by a weak or negligible rate dependence at the

unloading stage. To simulate the details of the unloading

curve, parameters such as rubbery modulus CR and the

back-stress dependence of parameter h, namely parameter

b should be modified, due to the material’s structural

Fig. 1 Shear stress–shear strain curves at two strain rates. Points:

experimental data after Amin et al. [22]. Lines: simulated results

Fig. 2 Cyclic shear stress–shear strain curves at a rate of 0.05 s-1.

Points: experimental data after Amin et al. [22]. Lines: simulated

results

Fig. 3 Cyclic shear stress–shear strain curves at a rate of 0.5 s-1.

Points: experimental data after Amin et al. [22]. Lines: simulated

results
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changes during the first loading at large deformations. This

is a reasonable assumption, given that after the first

loading, a chain detachment on fillers takes place, i.e., the

Mullins effect. The parameter values at the unloading

procedure are as follows:

h0 ¼ 12 MPa s�1;b ¼ 3 MPa�1; g0 ¼ 600 MPa s;

CR ¼ 0:06 MPa; q ¼ 3; d ¼ 0:7MPa�1; l ¼ 5 MPa, q ¼ 1

In this way, it is observed from Figs. 2 and 3 that the

simulated results in unloading appear the same trend as the

experimental ones.

Application to stress relaxation

The validity of our model was further examined on stress

relaxation tests in simple shear. For this type of deforma-

tion, the kinematics are expressed by the following

equations:

D ¼ 0; W ¼ 0 ð33Þ

Di ¼ �De ð34Þ

Di
0 ¼

1

g
ðP0 � PA

0 Þ ð35Þ

Following Eqs. 9 and 33, we obtain for the substructural

spin x:

x ¼ �Wi
0 ¼ �

q
2

aDi
0 � Di

0a
� �

: ð36Þ

We also have for the symmetric part De of the elastic

velocity gradient that it is equal to:

De ¼ ½ _FeFe�1 �s ð37Þ

Combining Eqs. 7, 34, 35 and 36 differential equations for

the components of tensor _Fe were obtained, as functions of

the components of tensor Fe. The initial values of Fe were

taken to be compatible with the instantaneously imposed

shear strain.

Moreover, from Eqs. 19 and 20 the following set of

differential equations for the deviatoric back stress tensor is

extracted:

_a11 ¼ h di
011
þ 2qa2

12 di
011
� 2qa11a12 di

012
ð38Þ

_a12 ¼ h di
012
� 2qa11a12 di

011
þ 2qa2

11 di
012

ð39Þ

where di
0ij

are the components of tensor Di
0.

The time evolution of Cauchy stress tensor r is extracted

by combining Eqs. 18, 19 and 34, and thus complicated

functions of the components of De and Fe are obtained.

The numerical calculations were performed considering

Eqs. 24–28 and 35–39. The integration has been made by

using small time steps until a high convergence is obtained.

All calculations were included in a computer program in

the frame of the software Mathematica [34]. The simulated

results for shear stress relaxation are presented in com-

parison with the experimental ones in Fig. 4. For the three

shear strains examined, namely 1.0, 1.71 and 2.5, a very

satisfactory agreement between theory and experiment was

achieved, at both, the short-time response and the equi-

librium state at long times as well. The calculations for

stress-relaxation were performed with the same set of

parameter values applied for monotonic loading.

Conclusions

The nonlinear viscoelastic response of materials at large

deformations is formulated through a constitutive approach,

valid in plasticity, which includes the fundamental princi-

ples of thermodynamic consistency, objectivity of kinematic

quantities as well as the determinance of the intermediate

(inelastic) configuration, being assured by the substructural

constitutive spin x. Nonlinear effects of rubbers, expressed

by rate dependence, cyclic loading and stress relaxation tests

were captured through the introduction of the constitutive

spin, the back stress tensor and a nonlinear viscosity which is

stress dependent. This approach is a contribution to the real

complex nonlinear viscoelastic response of rubbers, which

appear a variety of relaxation mechanisms, and conse-

quently a variation of viscosity coefficients. In those time

scales, where a weak dependence of the viscosity on rate,

stress and strain is expected, the proposed description pre-

dicts the material’s response with a high accuracy.

Whenever, the viscosity dependence on rate, stress and

strain is strong, deviations between experimental data and

simulated results are exhibited. To face this shortcoming, a

simple stress dependent nonlinear function of the viscosity

has been adapted, and proved to formulate the real material

response in a satisfactory way. On the other hand, to

Fig. 4 Shear stress-relaxation curves at three shear strains. Points:

experimental data after Amin et al. [22]. Lines: simulated results
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simulate the cyclic loading, parameters related with the

material structure such as the rubbery modulus CR and

parameter b, were accordingly modified, denoting this way

the structure degradation occurring in the first cycle of

loading.
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